97 research outputs found

    A Self-Routing Protocol for Distributed Consensus on Logical Information

    Get PDF
    In this paper, we address decision making problems, depending on a set of input events, with networks of dynamic agents that have partial visibility of such events. Previous work by the authors proposed so-called logical consensus approach, by which a network of agents, that can exchange binary values representing their local estimates of the events, is able to reach a unique and consistent decision. The approach therein proposed is based on the construction of an iterative map, whose computation is centralized and guaranteed under suitable conditions on the input visibility and graph connectivity. Under the same conditions, we extend the approach in this work by allowing the construction of a logical linear consensus system that is globally stable in a fully distributed way. The effectiveness of the proposed method is showed through the real implementation of a wireless sensor network as a framework for the surveillance of an urban area

    Influence of zinc and manganese enrichments on growth, biosorption and photosynthetic efficiency of Chlorella sp

    Get PDF
    Treating biosolids from industrial, urban, and agricultural plants produces high amounts of water. After organic pollutants and non-essential heavy metals have been removed, these wastewaters are still rich in trace elements such as zinc (Zn), copper, or manganese (Mn) and have high conductivity and extremely variable pH. In this study, an isolated Chlorella sp. strain was grown for 21 days in nutrient solutions enriched with known amounts of Zn or Mn to obtain concentrations three (4.0 mg L−1)- and six (1.0 mg L−1)-fold higher than the basal medium levels, respectively, and over the limits permitted in aquatic environments. The green alga exhibited high tolerance to Zn and Mn, with the maximum abatement of Zn (28–30%) and Mn (60–63.5%) after 14 and 7 days of culture, respectively. Mn stimulated the growth rate and biomass production of Chlorella, which showed the highest carbon levels just in the first week. In both treatments, the nitrogen and protein contents remarkably increased. The photosynthetic pigments increased until the 14th day, with a higher extent in the Zn-enriched solution. An increasing photochemical efficiency was observed after 7 days of treatment, when the microalgae grown in Zn- and Mn-enriched solutions showed a slightly higher maximum photochemical efficiency than control. The autotrophic and controlled growth system adopted was designed to monitor the dynamic balance of Zn and Mn contents in the solutions and in the algal biomass. This system has proved to be useful in identifying the optimal nutritional conditions of the microalgae, along with the optimal temporal patterns of both metal biosorption capacity for water remediation and element bioaccumulation in the algal biomass

    RNA sequencing of Populus x canadensis roots identifies key molecular mechanisms underlying physiological adaption to excess zinc

    Get PDF
    Populus x canadensis clone I-214 exhibits a general indicator phenotype in response to excess Zn, and a higher metal uptake in roots than in shoots with a reduced translocation to aerial parts under hydroponic conditions. This physiological adaptation seems mainly regulated by roots, although the molecular mechanisms that underlie these processes are still poorly understood. Here, differential expression analysis using RNA-sequencing technology was used to identify the molecular mechanisms involved in the response to excess Zn in root. In order to maximize specificity of detection of differentially expressed (DE) genes, we consider the intersection of genes identified by three distinct statistical approaches (61 up- and 19 down-regulated) and validate them by RT-qPCR, yielding an agreement of 93% between the two experimental techniques. Gene Ontology (GO) terms related to oxidation-reduction processes, transport and cellular iron ion homeostasis were enriched among DE genes, highlighting the importance of metal homeostasis in adaptation to excess Zn by P. x canadensis clone I-214. We identified the up-regulation of two Populus metal transporters (ZIP2 and NRAMP1) probably involved in metal uptake, and the down-regulation of a NAS4 gene involved in metal translocation. We identified also four Fe-homeostasis transcription factors (two bHLH38 genes, FIT and BTS) that were differentially expressed, probably for reducing Zn-induced Fe-deficiency. In particular, we suggest that the down-regulation of FIT transcription factor could be a mechanism to cope with Zn-induced Fe-deficiency in Populus. These results provide insight into the molecular mechanisms involved in adaption to excess Zn in Populus spp., but could also constitute a starting point for the identification and characterization of molecular markers or biotechnological targets for possible improvement of phytoremediation performances of poplar trees

    Effects of Heavy Metals and Arbuscular Mycorrhiza on the Leaf Proteome of a Selected Poplar Clone: A Time Course Analysis

    Get PDF
    Arbuscular mycorrhizal (AM) fungi establish a mutualistic symbiosis with the roots of most plant species. While receiving photosynthates, they improve the mineral nutrition of the plant and can also increase its tolerance towards some pollutants, like heavy metals. Although the fungal symbionts exclusively colonize the plant roots, some plant responses can be systemic. Therefore, in this work a clone of Populus alba L., previously selected for its tolerance to copper and zinc, was used to investigate the effects of the symbiosis with the AM fungus Glomus intraradices on the leaf protein expression. Poplar leaf samples were collected from plants maintained in a glasshouse on polluted (copper and zinc contaminated) or unpolluted soil, after four, six and sixteen months of growth. For each harvest, about 450 proteins were reproducibly separated on 2DE maps. At the first harvest the most relevant effect on protein modulation was exerted by the AM fungi, at the second one by the metals, and at the last one by both treatments. This work demonstrates how importantly the time of sampling affects the proteome responses in perennial plants. In addition, it underlines the ability of a proteomic approach, targeted on protein identification, to depict changes in a specific pattern of protein expression, while being still far from elucidating the biological function of each protein

    Improvement of renal oxidative stress markers after ozone administration in diabetic nephropathy in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several complications of diabetes mellitus (DM) e.g. nephropathy (DN) have been linked to oxidative stress. Ozone, by means of oxidative preconditioning, may exert its protective effects on DN.</p> <p>Aim</p> <p>The aim of the present work is to study the possible role of ozone therapy in ameliorating oxidative stress and inducing renal antioxidant defence in streptozotocin (STZ)-induced diabetic rats.</p> <p>Methods</p> <p>Six groups (n = 10) of male Sprague Dawley rats were used as follows: Group C: Control group. Group O: Ozone group, in which animals received ozone intraperitoneally (i.p.) (1.1 mg/kg). Group D: Diabetic group, in which DM was induced by single i.p. injections of streptozotocin (STZ). Group DI: Similar to group D but animals also received subcutaneous (SC) insulin (0.75 IU/100 gm BW.). Group DO: In which diabetic rats received the same dose of ozone, 48 h after induction of diabetes. Group DIO, in which diabetic rats received the same doses of insulin and ozone, respectively. All animals received daily treatment for six weeks. At the end of the study period (6 weeks), blood pressure, blood glycosylated hemoglobin (HbA<sub>1c</sub>), serum creatinine, blood urea nitrogen (BUN), kidney tissue levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxide (GPx), aldose reductase (AR) activities and malondialdehyde (MDA) concentration were measured.</p> <p>Results</p> <p>Induction of DM in rats significantly elevated blood pressure, HbA<sub>1c</sub>, BUN, creatinine and renal tissue levels of MDA and AR while significantly reducing SOD, CAT and GPx activities. Either Insulin or ozone therapy significantly reversed the effects of DM on all parameters; in combination (DIO group), they caused significant improvements in all parameters in comparison to each alone.</p> <p>Conclusions</p> <p>Ozone administration in conjunction with insulin in DM rats reduces oxidative stress markers and improves renal antioxidant enzyme activity which highlights its potential uses in the regimen for treatment of diabetic patients.</p

    Ion homeostasis in the Chloroplast

    Full text link
    peer reviewedThe chloroplast is an organelle of high demand for macro- and micro-nutrient ions, which are required for the maintenance of the photosynthetic process. To avoid deficiency while preventing excess, homeostasis mechanisms must be tightly regulated. Here, we describe the needs for nutrient ions in the chloroplast and briefly highlight their functions in the chloroplastidial metabolism. We further discuss the impact of nutrient deficiency on chloroplasts and the acclimation mechanisms that evolved to preserve the photosynthetic apparatus. We finally present what is known about import and export mechanisms for these ions. Whenever possible, a comparison between cyanobacteria, algae and plants is provided to add an evolutionary perspective to the description of ion homeostasis mechanisms in photosynthesis
    corecore